

Welcome to B2_Command_Line_Tool’s documentation!

Contents:

	Authorize-account command

	Cancel-all-unfinished-large-files command

	Cancel-large-file command

	Clear-account command

	Copy-file-by-id command

	Create-bucket command

	Create-key command

	Delete-bucket command

	Delete-file-version command

	Delete-key command

	Download-file-by-id command

	Download-file-by-name command

	Get-account-info command

	Get-bucket command

	Get-download-auth command

	Get-download-url-with-auth command

	Get-file-info command

	Hide-file command

	List-buckets command

	List-keys command

	List-parts command

	List-unfinished-large-files command

	Ls command

	Make-friendly-url command

	Make-url command

	Sync command

	Update-bucket command

	Upload-file command

	Version command

Indices and tables

	Index

	Module Index

	Search Page

Authorize-account command

Prompts for Backblaze applicationKeyId and applicationKey (unless they are given
on the command line).

You can authorize with either the master application key or
a normal application key.

To use the master application key, provide the application key ID and
application key from the “B2 Cloud Storage Buckets” page on
the web site: https://secure.backblaze.com/b2_buckets.htm

To use a normal application key, created with the create-key
command or on the web site, provide the application key ID
and the application key itself.

You can also optionally provide application key ID and application key
using environment variables B2_APPLICATION_KEY_ID and
B2_APPLICATION_KEY respectively.

Stores an account auth token in ~/.b2_account_info by default,
or the file specified by the B2_ACCOUNT_INFO environment variable.

Requires capability: listBuckets

b2 authorize-account [-h] [applicationKeyId] [applicationKey]

Positional Arguments

	applicationKeyId

	

	applicationKey

	

Cancel-all-unfinished-large-files command

Lists all large files that have been started but not
finished and cancels them. Any parts that have been
uploaded will be deleted.

Requires capability: listFiles, writeFiles

b2 cancel-all-unfinished-large-files [-h] bucketName

Positional Arguments

	bucketName

	

Cancel-large-file command

Cancels a large file upload. Used to undo a start-large-file.

Cannot be used once the file is finished. After finishing,
using delete-file-version to delete the large file.

Requires capability: writeFiles

b2 cancel-large-file [-h] fileId

Positional Arguments

	fileId

	

Clear-account command

Erases everything in ~/.b2_account_info. Location
of file can be overridden by setting B2_ACCOUNT_INFO.

b2 clear-account [-h]

Copy-file-by-id command

Copy a file version to the given bucket (server-side, not via download+upload).
Copies the contents of the source B2 file to destination bucket
and assigns the given name to the new B2 file.

By default, it copies the file info and content type. You can replace those
by setting the metadataDirective to “replace”.

—contentType and –info should only be provided when –metadataDirective
is set to “replace” and should not be provided when –metadataDirective
is set to “copy”.

–contentType and –info are optional. If not set, they will be set based on the
source file.

By default, the whole file gets copied, but you can copy an (inclusive!) range of bytes
from the source file to the new file using –range option.

Each –info entry is in the form “a=b”, you can specify many.

The maximum file size is 5GB or 10TB, depending on capability of installed b2sdk version.

Requires capability: readFiles (if sourceFileId bucket is private) and writeFiles

b2 copy-file-by-id [-h] [--metadataDirective {copy,replace}]
 [--contentType CONTENTTYPE] [--range RANGE] [--info INFO]
 sourceFileId destinationBucketName b2FileName

Positional Arguments

	sourceFileId

	

	destinationBucketName

	

	b2FileName

	

Named Arguments

	--metadataDirective

	Possible choices: copy, replace

	--contentType

	

	--range

	

	--info

	Default: []

Create-bucket command

Creates a new bucket. Prints the ID of the bucket created.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket.
These can be given as JSON on the command line.

Requires capability: writeBuckets

b2 create-bucket [-h] [--bucketInfo BUCKETINFO] [--corsRules CORSRULES]
 [--lifecycleRules LIFECYCLERULES]
 bucketName bucketType

Positional Arguments

	bucketName

	

	bucketType

	

Named Arguments

	--bucketInfo

	

	--corsRules

	

	--lifecycleRules

	

Create-key command

Creates a new application key. Prints the application key information. This is the only
time the application key itself will be returned. Listing application keys will show
their IDs, but not the secret keys.

The capabilities are passed in as a comma-separated list, like “readFiles,writeFiles”.

The ‘duration’ is the length of time the new application key will exist.
When the time expires the key will disappear and will no longer be usable. If not
specified, the key will not expire.

The ‘bucket’ is the name of a bucket in the account. When specified, the key
will only allow access to that bucket.

The ‘namePrefix’ restricts file access to files whose names start with the prefix.

The output is the new application key ID, followed by the application key itself.
The two values returned are the two that you pass to authorize-account to use the key.

Requires capability: writeKeys

b2 create-key [-h] [--bucket BUCKET] [--namePrefix NAMEPREFIX]
 [--duration DURATION]
 keyName capabilities

Positional Arguments

	keyName

	

	capabilities

	

Named Arguments

	--bucket

	

	--namePrefix

	

	--duration

	

Delete-bucket command

Deletes the bucket with the given name.

Requires capability: deleteBuckets

b2 delete-bucket [-h] bucketName

Positional Arguments

	bucketName

	

Delete-file-version command

Permanently and irrevocably deletes one version of a file.

Specifying the fileName is more efficient than leaving it out.
If you omit the fileName, it requires an initial query to B2
to get the file name, before making the call to delete the
file. This extra query requires the readFiles capability.

Requires capability: deleteFiles, readFiles (if file name not provided)

b2 delete-file-version [-h] [fileName] fileId

Positional Arguments

	fileName

	

	fileId

	

Delete-key command

Deletes the specified application key by its ‘ID’.

Requires capability: deleteKeys

b2 delete-key [-h] applicationKeyId

Positional Arguments

	applicationKeyId

	

Download-file-by-id command

Downloads the given file, and stores it in the given local file.

If the ‘tqdm’ library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use ‘–noProgress’ to disable progress reporting.

Requires capability: readFiles

b2 download-file-by-id [-h] [--noProgress] fileId localFileName

Positional Arguments

	fileId

	

	localFileName

	

Named Arguments

	--noProgress

	Default: False

Download-file-by-name command

Downloads the given file, and stores it in the given local file.

If the ‘tqdm’ library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use ‘–noProgress’ to disable progress reporting.

Requires capability: readFiles

b2 download-file-by-name [-h] [--noProgress]
 bucketName b2FileName localFileName

Positional Arguments

	bucketName

	

	b2FileName

	

	localFileName

	

Named Arguments

	--noProgress

	Default: False

Get-account-info command

Shows the account ID, key, auth token, URLs, and what capabilities
the current application keys has.

b2 get-account-info [-h]

Get-bucket command

Prints all of the information about the bucket, including
bucket info, CORS rules and lifecycle rules.

If –showSize is specified, then display the number of files
(fileCount) in the bucket and the aggregate size of all files
(totalSize). Hidden files and hide markers are accounted for
in the reported number of files, and hidden files also
contribute toward the reported aggregate size, whereas hide
markers do not. Each version of a file counts as an individual
file, and its size contributes toward the aggregate size.
Analysis is recursive. Note that –showSize requires multiple
API calls, and will therefore incur additional latency,
computation, and Class C transactions.

Requires capability: listBuckets

b2 get-bucket [-h] [--showSize] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--showSize

	Default: False

Get-download-auth command

Prints an authorization token that is valid only for downloading
files from the given bucket.

The token is valid for the duration specified, which defaults
to 86400 seconds (one day).

Only files that match that given prefix can be downloaded with
the token. The prefix defaults to “”, which matches all files
in the bucket.

Requires capability: shareFiles

b2 get-download-auth [-h] [--prefix PREFIX] [--duration DURATION] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--prefix

	Default: “”

	--duration

	Default: 86400

Get-download-url-with-auth command

Prints a URL to download the given file. The URL includes an authorization
token that allows downloads from the given bucket for files whose names
start with the given file name.

The URL will work for the given file, but is not specific to that file. Files
with longer names that start with the give file name can also be downloaded
with the same auth token.

The token is valid for the duration specified, which defaults
to 86400 seconds (one day).

Requires capability: shareFiles

b2 get-download-url-with-auth [-h] [--duration DURATION] bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

Named Arguments

	--duration

	Default: 86400

Get-file-info command

Prints all of the information about the file, but not its contents.

Requires capability: readFiles

b2 get-file-info [-h] fileId

Positional Arguments

	fileId

	

Hide-file command

Uploads a new, hidden, version of the given file.

Requires capability: writeFiles

b2 hide-file [-h] bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

List-buckets command

Lists all of the buckets in the current account.

Output lines list the bucket ID, bucket type, and bucket name,
and look like this:

98c960fd1cb4390c5e0f0519 allPublic my-bucket

Alternatively, the –json option produces machine-readable output
similar (but not identical) to the server api response format.

Requires capability: listBuckets

b2 list-buckets [-h] [--json]

Named Arguments

	--json

	Default: False

List-keys command

Lists the application keys for the current account.

The columns in the output are:

	ID of the application key

	Name of the application key

	Name of the bucket the key is restricted to, or ‘-‘ for no restriction

	Date of expiration, or ‘-‘

	Time of expiration, or ‘-‘

	File name prefix, in single quotes

	Command-separated list of capabilities

None of the values contain whitespace.

For keys restricted to buckets that do not exist any more, the bucket name is
replaced with ‘id=<bucketId>’, because deleted buckets do not have names any
more.

Requires capability: listKeys

b2 list-keys [-h] [--long]

Named Arguments

	--long

	Default: False

List-parts command

Lists all of the parts that have been uploaded for the given
large file, which must be a file that was started but not
finished or canceled.

Requires capability: writeFiles

b2 list-parts [-h] largeFileId

Positional Arguments

	largeFileId

	

List-unfinished-large-files command

Lists all of the large files in the bucket that were started,
but not finished or canceled.

Requires capability: listFiles

b2 list-unfinished-large-files [-h] bucketName

Positional Arguments

	bucketName

	

Ls command

Using the file naming convention that “/” separates folder
names from their contents, returns a list of the files
and folders in a given folder. If no folder name is given,
lists all files at the top level.

The –long option produces very wide multi-column output
showing the upload date/time, file size, file id, whether it
is an uploaded file or the hiding of a file, and the file
name. Folders don’t really exist in B2, so folders are
shown with “-” in each of the fields other than the name.

The –json option produces machine-readable output similar to
the server api response format.

The –versions option shows all versions of each file, not
just the most recent.

The –recursive option will descend into folders, and will show
only files, not folders.

Requires capability: listFiles

b2 ls [-h] [--long] [--json] [--versions] [--recursive]
 bucketName [folderName]

Positional Arguments

	bucketName

	

	folderName

	

Named Arguments

	--long

	Default: False

	--json

	Default: False

	--versions

	Default: False

	--recursive

	Default: False

Make-friendly-url command

Prints a short URL that can be used to download the given file, if
it is public.

b2 make-friendly-url [-h] bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

Make-url command

Prints an URL that can be used to download the given file, if
it is public.

b2 make-url [-h] fileId

Positional Arguments

	fileId

	

Sync command

Copies multiple files from source to destination. Optionally
deletes or hides destination files that the source does not have.

The synchronizer can copy files:

	From a B2 bucket to a local destination.

	From a local source to a B2 bucket.

	From one B2 bucket to another.

	Between different folders in the same B2 bucket.

Use “b2://<bucketName>/<prefix>” for B2 paths, e.g. “b2://my-bucket-name/a/path/prefix/”.

Progress is displayed on the console unless ‘–noProgress’ is
specified. A list of actions taken is always printed.

Specify ‘–dryRun’ to simulate the actions that would be taken.

To allow sync to run when the source directory is empty, potentially
deleting all files in a bucket, specify ‘–allowEmptySource’.
The default is to fail when the specified source directory doesn’t exist
or is empty. (This check only applies to version 1.0 and later.)

Users with high-performance networks, or file sets with very small
files, will benefit from multi-threaded uploads. The default number
of threads is 10. Experiment with the –threads parameter if the
default is not working well.

Users with low-performance networks may benefit from reducing the
number of threads. Using just one thread will minimize the impact
on other users of the network.

Note that using multiple threads will usually be detrimental to
the other users on your network.

You can specify –excludeRegex to selectively ignore files that
match the given pattern. Ignored files will not copy during
the sync operation. The pattern is a regular expression
that is tested against the full path of each file.

You can specify –includeRegex to selectively override ignoring
files that match the given –excludeRegex pattern by an
–includeRegex pattern. Similarly to –excludeRegex, the pattern
is a regular expression that is tested against the full path
of each file.

Note that –includeRegex cannot be used without –excludeRegex.

You can specify –excludeAllSymlinks to skip symlinks when
syncing from a local source.

When a directory is excluded by using –excludeDirRegex, all of
the files within it are excluded, even if they match an –includeRegex
pattern. This means that there is no need to look inside excluded
directories, and you can exclude directories containing files for which
you don’t have read permission and avoid getting errors.

The –excludeDirRegex is a regular expression that is tested against
the full path of each directory. The path being matched does not have
a trailing ‘/’, so don’t include on in your regular expression.

Multiple regex rules can be applied by supplying them as pipe
delimited instructions. Note that the regex for this command
is Python regex. Reference: https://docs.python.org/2/library/re.html.

Regular expressions are considered a match if they match a substring
starting at the first character. “.*e” will match “hello”. This is
not ideal, but we will maintain this behavior for compatibility.
If you want to match the entire path, put a “$” at the end of the
regex, such as “.*llo$”.

You can specify –excludeIfModifiedAfter to selectively ignore file versions
(including hide markers) which were synced after given time (for local source)
or ignore only specific file versions (for b2 source).
Ignored files or file versions will not be taken for consideration during sync.
The time should be given as a seconds timestamp (e.g. “1367900664”)
If you need milliseconds precision, put it after the comma (e.g. “1367900664.152”)

Files are considered to be the same if they have the same name
and modification time. This behaviour can be changed using the
–compareVersions option. Possible values are:
‘none’: Comparison using the file name only
‘modTime’: Comparison using the modification time (default)
‘size’: Comparison using the file size
A future enhancement may add the ability to compare the SHA1 checksum
of the files.

Fuzzy comparison of files based on modTime or size can be enabled by
specifying the –compareThreshold option. This will treat modTimes
(in milliseconds) or sizes (in bytes) as the same if they are within
the comparison threshold. Files that match, within the threshold, will
not be synced. Specifying –verbose and –dryRun can be useful to
determine comparison value differences.

When a destination file is present that is not in the source, the
default is to leave it there. Specifying –delete means to delete
destination files that are not in the source.

When the destination is B2, you have the option of leaving older
versions in place. Specifying –keepDays will delete any older
versions more than the given number of days old, based on the
modification time of the file. This option is not available when
the destination is a local folder.

Files at the source that have a newer modification time are always
copied to the destination. If the destination file is newer, the
default is to report an error and stop. But with –skipNewer set,
those files will just be skipped. With –replaceNewer set, the
old file from the source will replace the newer one in the destination.

To make the destination exactly match the source, use:
sphinx-build sync –delete –replaceNewer … …

WARNING: Using ‘–delete’ deletes files! We recommend not using it.
If you use –keepDays instead, you will have some time to recover your
files if you discover they are missing on the source end.

To make the destination match the source, but retain previous versions
for 30 days:
sphinx-build sync –keepDays 30 –replaceNewer … b2://…

Example of sync being used with excludeRegex. This will ignore .DS_Store files
and .Spotlight-V100 folders
sphinx-build sync -excludeRegex ‘(.*.DS_Store)|(.*.Spotlight-V100)’ … b2://…

Requires capabilities: listFiles, readFiles (for downloading), writeFiles (for uploading)

b2 sync [-h] [--noProgress] [--dryRun] [--allowEmptySource]
 [--excludeAllSymlinks] [--threads THREADS]
 [--compareVersions {none,modTime,size}] [--compareThreshold MILLIS]
 [--excludeRegex REGEX] [--includeRegex REGEX]
 [--excludeDirRegex REGEX] [--excludeIfModifiedAfter TIMESTAMP]
 [--skipNewer | --replaceNewer] [--delete | --keepDays DAYS]
 source destination

Positional Arguments

	source

	

	destination

	

Named Arguments

	--noProgress

	Default: False

	--dryRun

	Default: False

	--allowEmptySource

	Default: False

	--excludeAllSymlinks

	Default: False

	--threads

	Default: 10

	--compareVersions

	Possible choices: none, modTime, size

Default: “modTime”

	--compareThreshold

	

	--excludeRegex

	Default: []

	--includeRegex

	Default: []

	--excludeDirRegex

	Default: []

	--excludeIfModifiedAfter

	

	--skipNewer

	Default: False

	--replaceNewer

	Default: False

	--delete

	Default: False

	--keepDays

	

Update-bucket command

Updates the bucketType of an existing bucket. Prints the ID
of the bucket updated.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket.
These can be given as JSON on the command line.

Requires capability: writeBuckets

b2 update-bucket [-h] [--bucketInfo BUCKETINFO] [--corsRules CORSRULES]
 [--lifecycleRules LIFECYCLERULES]
 bucketName bucketType

Positional Arguments

	bucketName

	

	bucketType

	

Named Arguments

	--bucketInfo

	

	--corsRules

	

	--lifecycleRules

	

Upload-file command

Uploads one file to the given bucket. Uploads the contents
of the local file, and assigns the given name to the B2 file.

By default, upload_file will compute the sha1 checksum of the file
to be uploaded. But, if you already have it, you can provide it
on the command line to save a little time.

Content type is optional. If not set, it will be set based on the
file extension.

By default, the file is broken into as many parts as possible to
maximize upload parallelism and increase speed. The minimum that
B2 allows is 100MB. Setting –minPartSize to a larger value will
reduce the number of parts uploaded when uploading a large file.

The maximum number of upload threads to use to upload parts of a large file
is specified by ‘–threads’. It has no effect on small files (under 200MB).
Default is 10.

If the ‘tqdm’ library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use ‘–noProgress’ to disable progress reporting.

Each fileInfo is of the form “a=b”.

Requires capability: writeFiles

b2 upload-file [-h] [--noProgress] [--quiet] [--contentType CONTENTTYPE]
 [--minPartSize MINPARTSIZE] [--sha1 SHA1] [--threads THREADS]
 [--info INFO]
 bucketName localFilePath b2FileName

Positional Arguments

	bucketName

	

	localFilePath

	

	b2FileName

	

Named Arguments

	--noProgress

	Default: False

	--quiet

	Default: False

	--contentType

	

	--minPartSize

	

	--sha1

	

	--threads

	Default: 10

	--info

	Default: []

Version command

Prints the version number of this tool.

b2 version [-h]

Index

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to B2_Command_Line_Tool’s documentation!

 		
 Authorize-account command

 		
 Positional Arguments

 		
 Cancel-all-unfinished-large-files command

 		
 Positional Arguments

 		
 Cancel-large-file command

 		
 Positional Arguments

 		
 Clear-account command

 		
 Copy-file-by-id command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Create-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Create-key command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Delete-bucket command

 		
 Positional Arguments

 		
 Delete-file-version command

 		
 Positional Arguments

 		
 Delete-key command

 		
 Positional Arguments

 		
 Download-file-by-id command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Download-file-by-name command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-account-info command

 		
 Get-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-download-auth command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-download-url-with-auth command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-file-info command

 		
 Positional Arguments

 		
 Hide-file command

 		
 Positional Arguments

 		
 List-buckets command

 		
 Named Arguments

 		
 List-keys command

 		
 Named Arguments

 		
 List-parts command

 		
 Positional Arguments

 		
 List-unfinished-large-files command

 		
 Positional Arguments

 		
 Ls command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Make-friendly-url command

 		
 Positional Arguments

 		
 Make-url command

 		
 Positional Arguments

 		
 Sync command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Update-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Upload-file command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Version command

_static/file.png

