
B2_Command_Line_Tool
Documentation

Release 3.0.1

Backblaze

Aug 10, 2021

CONTENTS

1 Documentation index 3

2 Indices and tables 25

i

ii

B2_Command_Line_Tool Documentation, Release 3.0.1

This program provides command-line access to the B2 service.

There are two flows of authorization:

• call b2 authorize-account and have the credentials cached in sqlite

• set B2_APPLICATION_KEY_ID and B2_APPLICATION_KEY environment variables when running this program

This program caches authentication-related and other data in a local SQLite database. The location of this database is
determined in the following way:

• B2_ACCOUNT_INFO env var’s value, if set

• ~/.b2_account_info, if it exists

• XDG_CONFIG_HOME/b2/account_info, if XDG_CONFIG_HOME env var is set

• ~/.b2_account_info, as default

For more details on one command:

b2 <command> --help

When authorizing with application keys, this tool requires that the key have the listBuckets capability so that it can
take the bucket names you provide on the command line and translate them into bucket IDs for the B2 Storage service.
Each different command may required additional capabilities. You can find the details for each command in the help
for that command.

A string provided via an optional environment variable B2_USER_AGENT_APPEND will be appended to the User-Agent.

CONTENTS 1

B2_Command_Line_Tool Documentation, Release 3.0.1

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION INDEX

1.1 Authorize-account command

Prompts for Backblaze applicationKeyId and applicationKey (unless they are given on the command line).

You can authorize with either the master application key or a normal application key.

To use the master application key, provide the application key ID and application key from the B2 Cloud Storage
Buckets page on the web site: https://secure.backblaze.com/b2_buckets.htm

To use a normal application key, created with the create-key command or on the web site, provide the application
key ID and the application key itself.

You can also optionally provide application key ID and application key using environment variables
B2_APPLICATION_KEY_ID and B2_APPLICATION_KEY respectively.

Stores an account auth token in a local cache, see

b2 --help

for details on how the location of this cache is determined.

Requires capability:

• listBuckets

b2 authorize-account [-h] [applicationKeyId] [applicationKey]

1.1.1 Positional Arguments

applicationKeyId

applicationKey

3

https://secure.backblaze.com/b2_buckets.htm

B2_Command_Line_Tool Documentation, Release 3.0.1

1.2 Cancel-all-unfinished-large-files command

Lists all large files that have been started but not finished and cancels them. Any parts that have been uploaded will be
deleted.

Requires capability:

• listFiles

• writeFiles

b2 cancel-all-unfinished-large-files [-h] bucketName

1.2.1 Positional Arguments

bucketName

1.3 Cancel-large-file command

Cancels a large file upload. Used to undo a start-large-file.

Cannot be used once the file is finished. After finishing, using delete-file-version to delete the large file.

Requires capability:

• writeFiles

b2 cancel-large-file [-h] fileId

1.3.1 Positional Arguments

fileId

1.4 Clear-account command

Erases everything in local cache.

See

b2 --help

for details on how the location of this cache is determined.

b2 clear-account [-h]

4 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.5 Copy-file-by-id command

Copy a file version to the given bucket (server-side, not via download+upload). Copies the contents of the source
B2 file to destination bucket and assigns the given name to the new B2 file, possibly setting options like server-side
encryption and retention.

Warning: Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their
retention period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket
default retention, as it may lead to high storage costs.

By default, it copies the file info and content type, therefore --contentType and --info are optional. If one of them
is set, the other has to be set as well.

To force the destination file to have empty fileInfo, use --noInfo.

By default, the whole file gets copied, but you can copy an (inclusive!) range of bytes from the source file to the new
file using --range option.

Each --info entry is in the form a=b, you can specify many.

The maximum file size is 5GB or 10TB, depending on capability of installed b2sdk version.

To request SSE-B2 or SSE-C encryption for destination files, please set
--destinationServerSideEncryption=SSE-B2/SSE-C. The default algorithm is set to AES256 which can
be changed with --destinationServerSideEncryptionAlgorithm parameter. Using SSE-C requires provid-
ing B2_DESTINATION_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key. If
B2_DESTINATION_SSE_C_KEY_ID environment variable is provided, it’s value will be saved as sse_c_key_id in
the uploaded file’s fileInfo.

To access SSE-C encrypted files, please set --sourceServerSideEncryption=SSE-C. The default algorithm is set
to AES256 which can by changed with --sourceServerSideEncryptionAlgorithm parameter. Using SSE-C re-
quires providing B2_SOURCE_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key.

Setting file retention settings requires the writeFileRetentions capability, and only works in bucket with fileLockEn-
abled=true. Providing --fileRetentionMode requires providing --retainUntil which has to be a future times-
tamp, in the form of an integer representing milliseconds since epoch. Leaving out these options results in a file retained
according to bucket defaults.

Setting legal holds requires the writeFileLegalHolds capability, and only works in bucket with fileLockEnabled=true.

If either the source or the destination uses SSE-C and --contentType and --info are not provided, then to perform
the copy the source file’s metadata has to be fetched first - an additional request to B2 cloud has to be made. To achieve
that, provide --fetchMetadata. Without that flag, the command will fail.

Requires capability:

• readFiles (if sourceFileId bucket is private)

• writeFiles

b2 copy-file-by-id [-h] [--fetchMetadata] [--contentType CONTENTTYPE]
[--range RANGE] [--info INFO | --noInfo]
[--destinationServerSideEncryption {SSE-B2,SSE-C}]
[--destinationServerSideEncryptionAlgorithm {AES256}]
[--sourceServerSideEncryption {SSE-C}]
[--sourceServerSideEncryptionAlgorithm {AES256}]

(continues on next page)

1.5. Copy-file-by-id command 5

B2_Command_Line_Tool Documentation, Release 3.0.1

(continued from previous page)

[--fileRetentionMode {compliance,governance}]
[--retainUntil TIMESTAMP] [--legalHold {on,off}]
sourceFileId destinationBucketName b2FileName

1.5.1 Positional Arguments

sourceFileId

destinationBucketName

b2FileName

1.5.2 Named Arguments

--fetchMetadata Default: False

--contentType

--range

--info Default: []

--noInfo Default: False

--destinationServerSideEncryption Possible choices: SSE-B2, SSE-C

--destinationServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

--sourceServerSideEncryption Possible choices: SSE-C

--sourceServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

--fileRetentionMode Possible choices: compliance, governance

--retainUntil

--legalHold Possible choices: on, off

1.6 Create-bucket command

Creates a new bucket. Prints the ID of the bucket created.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket. These can be given as JSON on the
command line.

If you want server-side encryption for all of the files that are uploaded to a bucket, you can enable SSE-B2 encryption
as a default setting for the bucket. In order to do that pass --defaultServerSideEncryption=SSE-B2. The default
algorithm is set to AES256 which can by changed with --defaultServerSideEncryptionAlgorithm parameter.
All uploads to that bucket, from the time default encryption is enabled onward, will then be encrypted with SSE-B2 by
default.

To disable default bucket encryption, use --defaultServerSideEncryption=none.

6 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

If --defaultServerSideEncryption is not provided, default server side encryption is determined by the server.

Note: Note that existing files in the bucket are not affected by default bucket encryption settings.

Requires capability:

• writeBuckets

• readBucketEncryption

• writeBucketEncryption

• writeBucketRetentions

b2 create-bucket [-h] [--bucketInfo BUCKETINFO] [--corsRules CORSRULES]
[--lifecycleRules LIFECYCLERULES] [--fileLockEnabled]
[--defaultServerSideEncryption {SSE-B2,none}]
[--defaultServerSideEncryptionAlgorithm {AES256}]
bucketName bucketType

1.6.1 Positional Arguments

bucketName

bucketType

1.6.2 Named Arguments

--bucketInfo

--corsRules

--lifecycleRules

--fileLockEnabled If given, the bucket will have the file lock mechanism enabled. This parameter
cannot be changed after bucket creation.

Default: False

--defaultServerSideEncryption Possible choices: SSE-B2, none

--defaultServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

1.7 Create-key command

Creates a new application key. Prints the application key information. This is the only time the application key itself
will be returned. Listing application keys will show their IDs, but not the secret keys.

The capabilities are passed in as a comma-separated list, like readFiles,writeFiles.

The duration is the length of time (in seconds) the new application key will exist. When the time expires the key will
disappear and will no longer be usable. If not specified, the key will not expire.

1.7. Create-key command 7

B2_Command_Line_Tool Documentation, Release 3.0.1

The bucket is the name of a bucket in the account. When specified, the key will only allow access to that bucket.

The namePrefix restricts file access to files whose names start with the prefix.

The output is the new application key ID, followed by the application key itself. The two values returned are the two
that you pass to authorize-account to use the key.

Requires capability:

• writeKeys

b2 create-key [-h] [--bucket BUCKET] [--namePrefix NAMEPREFIX]
[--duration DURATION]
keyName capabilities

1.7.1 Positional Arguments

keyName

capabilities

1.7.2 Named Arguments

--bucket

--namePrefix

--duration

1.8 Delete-bucket command

Deletes the bucket with the given name.

Requires capability:

• deleteBuckets

b2 delete-bucket [-h] bucketName

1.8.1 Positional Arguments

bucketName

8 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.9 Delete-file-version command

Permanently and irrevocably deletes one version of a file.

Specifying the fileName is more efficient than leaving it out. If you omit the fileName, it requires an initial query to
B2 to get the file name, before making the call to delete the file. This extra query requires the readFiles capability.

Requires capability:

• deleteFiles

• readFiles (if file name not provided)

b2 delete-file-version [-h] [fileName] fileId

1.9.1 Positional Arguments

fileName

fileId

1.10 Delete-key command

Deletes the specified application key by its ID.

Requires capability:

• deleteKeys

b2 delete-key [-h] applicationKeyId

1.10.1 Positional Arguments

applicationKeyId

1.11 Download-file-by-id command

Downloads the given file, and stores it in the given local file.

If the tqdm library is installed, progress bar is displayed on stderr. Without it, simple text progress is printed. Use
--noProgress to disable progress reporting.

To access SSE-C encrypted files, please set --sourceServerSideEncryption=SSE-C. The default algorithm is set
to AES256 which can by changed with --sourceServerSideEncryptionAlgorithm parameter. Using SSE-C re-
quires providing B2_SOURCE_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key.

Requires capability:

• readFiles

1.9. Delete-file-version command 9

B2_Command_Line_Tool Documentation, Release 3.0.1

b2 download-file-by-id [-h] [--noProgress]
[--sourceServerSideEncryption {SSE-C}]
[--sourceServerSideEncryptionAlgorithm {AES256}]
fileId localFileName

1.11.1 Positional Arguments

fileId

localFileName

1.11.2 Named Arguments

--noProgress Default: False

--sourceServerSideEncryption Possible choices: SSE-C

--sourceServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

1.12 Download-file-by-name command

Downloads the given file, and stores it in the given local file.

If the tqdm library is installed, progress bar is displayed on stderr. Without it, simple text progress is printed. Use
--noProgress to disable progress reporting.

To access SSE-C encrypted files, please set --sourceServerSideEncryption=SSE-C. The default algorithm is set
to AES256 which can by changed with --sourceServerSideEncryptionAlgorithm parameter. Using SSE-C re-
quires providing B2_SOURCE_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key.

Requires capability:

• readFiles

b2 download-file-by-name [-h] [--noProgress]
[--sourceServerSideEncryption {SSE-C}]
[--sourceServerSideEncryptionAlgorithm {AES256}]
bucketName b2FileName localFileName

1.12.1 Positional Arguments

bucketName

b2FileName

localFileName

10 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.12.2 Named Arguments

--noProgress Default: False

--sourceServerSideEncryption Possible choices: SSE-C

--sourceServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

1.13 Get-account-info command

Shows the account ID, key, auth token, URLs, and what capabilities the current application keys has.

b2 get-account-info [-h]

1.14 Get-bucket command

Prints all of the information about the bucket, including bucket info, CORS rules and lifecycle rules.

If --showSize is specified, then display the number of files (fileCount) in the bucket and the aggregate size of all
files (totalSize). Hidden files and hide markers are accounted for in the reported number of files, and hidden files
also contribute toward the reported aggregate size, whereas hide markers do not. Each version of a file counts as an
individual file, and its size contributes toward the aggregate size. Analysis is recursive.

Note: Note that --showSize requires multiple API calls, and will therefore incur additional latency, computation,
and Class C transactions.

Requires capability:

• listBuckets

b2 get-bucket [-h] [--showSize] bucketName

1.14.1 Positional Arguments

bucketName

1.13. Get-account-info command 11

B2_Command_Line_Tool Documentation, Release 3.0.1

1.14.2 Named Arguments

--showSize Default: False

1.15 Get-download-auth command

Prints an authorization token that is valid only for downloading files from the given bucket.

The token is valid for the duration specified, which defaults to 86400 seconds (one day).

Only files that match that given prefix can be downloaded with the token. The prefix defaults to “”, which matches all
files in the bucket.

Requires capability:

• shareFiles

b2 get-download-auth [-h] [--prefix PREFIX] [--duration DURATION] bucketName

1.15.1 Positional Arguments

bucketName

1.15.2 Named Arguments

--prefix Default: “”

--duration Default: 86400

1.16 Get-download-url-with-auth command

Prints a URL to download the given file. The URL includes an authorization token that allows downloads from the
given bucket for files whose names start with the given file name.

The URL will work for the given file, but is not specific to that file. Files with longer names that start with the give file
name can also be downloaded with the same auth token.

The token is valid for the duration specified, which defaults to 86400 seconds (one day).

Requires capability:

• shareFiles

b2 get-download-url-with-auth [-h] [--duration DURATION] bucketName fileName

12 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.16.1 Positional Arguments

bucketName

fileName

1.16.2 Named Arguments

--duration Default: 86400

1.17 Get-file-info command

Prints all of the information about the file, but not its contents.

Requires capability:

• readFiles

b2 get-file-info [-h] fileId

1.17.1 Positional Arguments

fileId

1.18 Hide-file command

Uploads a new, hidden, version of the given file.

Requires capability:

• writeFiles

b2 hide-file [-h] bucketName fileName

1.18.1 Positional Arguments

bucketName

fileName

1.17. Get-file-info command 13

B2_Command_Line_Tool Documentation, Release 3.0.1

1.19 List-buckets command

Lists all of the buckets in the current account.

Output lines list the bucket ID, bucket type, and bucket name, and look like this:

98c960fd1cb4390c5e0f0519 allPublic my-bucket

Alternatively, the --json option produces machine-readable output similar (but not identical) to the server api response
format.

Requires capability:

• listBuckets

b2 list-buckets [-h] [--json]

1.19.1 Named Arguments

--json Default: False

1.20 List-keys command

Lists the application keys for the current account.

The columns in the output are:

• ID of the application key

• Name of the application key

• Name of the bucket the key is restricted to, or - for no restriction

• Date of expiration, or -

• Time of expiration, or -

• File name prefix, in single quotes

• Command-separated list of capabilities

None of the values contain whitespace.

For keys restricted to buckets that do not exist any more, the bucket name is replaced with id=<bucketId>, because
deleted buckets do not have names any more.

Requires capability:

• listKeys

b2 list-keys [-h] [--long]

14 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.20.1 Named Arguments

--long Default: False

1.21 List-parts command

Lists all of the parts that have been uploaded for the given large file, which must be a file that was started but not finished
or canceled.

Requires capability:

• writeFiles

b2 list-parts [-h] largeFileId

1.21.1 Positional Arguments

largeFileId

1.22 List-unfinished-large-files command

Lists all of the large files in the bucket that were started, but not finished or canceled.

Requires capability:

• listFiles

b2 list-unfinished-large-files [-h] bucketName

1.22.1 Positional Arguments

bucketName

1.23 Ls command

Using the file naming convention that / separates folder names from their contents, returns a list of the files and folders
in a given folder. If no folder name is given, lists all files at the top level.

The --long option produces very wide multi-column output showing the upload date/time, file size, file id, whether it
is an uploaded file or the hiding of a file, and the file name. Folders don’t really exist in B2, so folders are shown with
- in each of the fields other than the name.

The --json option produces machine-readable output similar to the server api response format.

The --versions option shows all versions of each file, not just the most recent.

1.21. List-parts command 15

B2_Command_Line_Tool Documentation, Release 3.0.1

The --recursive option will descend into folders, and will show only files, not folders.

Requires capability:

• listFiles

b2 ls [-h] [--long] [--json] [--versions] [--recursive]
bucketName [folderName]

1.23.1 Positional Arguments

bucketName

folderName

1.23.2 Named Arguments

--long Default: False

--json Default: False

--versions Default: False

--recursive Default: False

1.24 Make-friendly-url command

Prints a short URL that can be used to download the given file, if it is public.

b2 make-friendly-url [-h] bucketName fileName

1.24.1 Positional Arguments

bucketName

fileName

1.25 Make-url command

Prints an URL that can be used to download the given file, if it is public.

b2 make-url [-h] fileId

16 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.25.1 Positional Arguments

fileId

1.26 Sync command

Copies multiple files from source to destination. Optionally deletes or hides destination files that the source does not
have.

The synchronizer can copy files:

• From a B2 bucket to a local destination.

• From a local source to a B2 bucket.

• From one B2 bucket to another.

• Between different folders in the same B2 bucket.

Use b2://<bucketName>/<prefix> for B2 paths, e.g. b2://my-bucket-name/a/path/prefix/.

Progress is displayed on the console unless --noProgress is specified. A list of actions taken is always printed.

Specify --dryRun to simulate the actions that would be taken.

To allow sync to run when the source directory is empty, potentially deleting all files in a bucket, specify
--allowEmptySource. The default is to fail when the specified source directory doesn’t exist or is empty. (This
check only applies to version 1.0 and later.)

Users with high-performance networks, or file sets with very small files, will benefit from multi-threaded uploads. The
default number of threads is 10. Experiment with the --threads parameter if the default is not working well.

Users with low-performance networks may benefit from reducing the number of threads. Using just one thread will
minimize the impact on other users of the network.

Note: Note that using multiple threads will usually be detrimental to the other users on your network.

You can specify --excludeRegex to selectively ignore files that match the given pattern. Ignored files will not copy
during the sync operation. The pattern is a regular expression that is tested against the full path of each file.

You can specify --includeRegex to selectively override ignoring files that match the given --excludeRegex pattern
by an --includeRegex pattern. Similarly to --excludeRegex, the pattern is a regular expression that is tested against
the full path of each file.

Note: Note that --includeRegex cannot be used without --excludeRegex.

You can specify --excludeAllSymlinks to skip symlinks when syncing from a local source.

When a directory is excluded by using --excludeDirRegex, all of the files within it are excluded, even if they match
an --includeRegex pattern. This means that there is no need to look inside excluded directories, and you can exclude
directories containing files for which you don’t have read permission and avoid getting errors.

The --excludeDirRegex is a regular expression that is tested against the full path of each directory. The path being
matched does not have a trailing /, so don’t include on in your regular expression.

1.26. Sync command 17

B2_Command_Line_Tool Documentation, Release 3.0.1

Multiple regex rules can be applied by supplying them as pipe delimited instructions. Note that the regex for this
command is Python regex. Reference: https://docs.python.org/2/library/re.html

Regular expressions are considered a match if they match a substring starting at the first character. .*e will match
hello. This is not ideal, but we will maintain this behavior for compatibility. If you want to match the entire path, put
a $ at the end of the regex, such as .*llo$.

You can specify --excludeIfModifiedAfter to selectively ignore file versions (including hide markers) which were
synced after given time (for local source) or ignore only specific file versions (for b2 source). Ignored files or file
versions will not be taken for consideration during sync. The time should be given as a seconds timestamp (e.g.
“1367900664”) If you need milliseconds precision, put it after the comma (e.g. “1367900664.152”)

Files are considered to be the same if they have the same name and modification time. This behaviour can be changed
using the --compareVersions option. Possible values are:

• none: Comparison using the file name only

• modTime: Comparison using the modification time (default)

• size: Comparison using the file size

A future enhancement may add the ability to compare the SHA1 checksum of the files.

Fuzzy comparison of files based on modTime or size can be enabled by specifying the --compareThreshold option.
This will treat modTimes (in milliseconds) or sizes (in bytes) as the same if they are within the comparison threshold.
Files that match, within the threshold, will not be synced. Specifying --verbose and --dryRun can be useful to
determine comparison value differences.

When a destination file is present that is not in the source, the default is to leave it there. Specifying --delete means
to delete destination files that are not in the source.

When the destination is B2, you have the option of leaving older versions in place. Specifying --keepDays will delete
any older versions more than the given number of days old, based on the modification time of the file. This option is
not available when the destination is a local folder.

Files at the source that have a newer modification time are always copied to the destination. If the destination file is
newer, the default is to report an error and stop. But with --skipNewer set, those files will just be skipped. With
--replaceNewer set, the old file from the source will replace the newer one in the destination.

To make the destination exactly match the source, use:

b2 sync --delete --replaceNewer

Warning: Using --delete deletes files! We recommend not using it. If you use --keepDays instead, you will
have some time to recover your files if you discover they are missing on the source end.

To make the destination match the source, but retain previous versions for 30 days:

b2 sync --keepDays 30 --replaceNewer ... b2://...

Example of sync being used with --excludeRegex. This will ignore .DS_Store files and .Spotlight-V100 folders:

b2 sync --excludeRegex '(.*\.DS_Store)|(.*\.Spotlight-V100)' ... b2://...

To request SSE-B2 or SSE-C encryption for destination files, please set
--destinationServerSideEncryption=SSE-B2/SSE-C. The default algorithm is set to AES256 which can
be changed with --destinationServerSideEncryptionAlgorithm parameter. Using SSE-C requires provid-
ing B2_DESTINATION_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key. If

18 Chapter 1. Documentation index

https://docs.python.org/2/library/re.html

B2_Command_Line_Tool Documentation, Release 3.0.1

B2_DESTINATION_SSE_C_KEY_ID environment variable is provided, it’s value will be saved as sse_c_key_id in
the uploaded file’s fileInfo.

To access SSE-C encrypted files, please set --sourceServerSideEncryption=SSE-C. The default algorithm is set
to AES256 which can by changed with --sourceServerSideEncryptionAlgorithm parameter. Using SSE-C re-
quires providing B2_SOURCE_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key.

Requires capabilities:

• listFiles

• readFiles (for downloading)

• writeFiles (for uploading)

b2 sync [-h] [--noProgress] [--dryRun] [--allowEmptySource]
[--excludeAllSymlinks] [--threads THREADS]
[--compareVersions {none,modTime,size}] [--compareThreshold MILLIS]
[--excludeRegex REGEX] [--includeRegex REGEX]
[--excludeDirRegex REGEX] [--excludeIfModifiedAfter TIMESTAMP]
[--destinationServerSideEncryption {SSE-B2,SSE-C}]
[--destinationServerSideEncryptionAlgorithm {AES256}]
[--sourceServerSideEncryption {SSE-C}]
[--sourceServerSideEncryptionAlgorithm {AES256}]
[--skipNewer | --replaceNewer] [--delete | --keepDays DAYS]
source destination

1.26.1 Positional Arguments

source

destination

1.26.2 Named Arguments

--noProgress Default: False

--dryRun Default: False

--allowEmptySource Default: False

--excludeAllSymlinks Default: False

--threads Default: 10

--compareVersions Possible choices: none, modTime, size

Default: “modTime”

--compareThreshold

--excludeRegex Default: []

--includeRegex Default: []

--excludeDirRegex Default: []

--excludeIfModifiedAfter

--destinationServerSideEncryption Possible choices: SSE-B2, SSE-C

1.26. Sync command 19

B2_Command_Line_Tool Documentation, Release 3.0.1

--destinationServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

--sourceServerSideEncryption Possible choices: SSE-C

--sourceServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

--skipNewer Default: False

--replaceNewer Default: False

--delete Default: False

--keepDays

1.27 Update-bucket command

Updates the bucketType of an existing bucket. Prints the ID of the bucket updated.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket. These can be given as JSON on the
command line.

If you want server-side encryption for all of the files that are uploaded to a bucket, you can enable SSE-B2 encryption
as a default setting for the bucket. In order to do that pass --defaultServerSideEncryption=SSE-B2. The default
algorithm is set to AES256 which can by changed with --defaultServerSideEncryptionAlgorithm parameter.
All uploads to that bucket, from the time default encryption is enabled onward, will then be encrypted with SSE-B2 by
default.

To disable default bucket encryption, use --defaultServerSideEncryption=none.

If --defaultServerSideEncryption is not provided, default server side encryption is determined by the server.

Note: Note that existing files in the bucket are not affected by default bucket encryption settings.

To set a default retention for files in the bucket --defaultRetentionMode and --defaultRetentionPeriod have
to be specified. The latter one is of the form “X days|years”.

Warning: Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their
retention period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket
default retention, as it may lead to high storage costs.

Requires capability:

• writeBuckets

• readBucketEncryption

and for some operations:

• writeBucketRetentions

• writeBucketEncryption

20 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

b2 update-bucket [-h] [--bucketInfo BUCKETINFO] [--corsRules CORSRULES]
[--lifecycleRules LIFECYCLERULES]
[--defaultRetentionMode {compliance,governance,none}]
[--defaultRetentionPeriod period]
[--defaultServerSideEncryption {SSE-B2,none}]
[--defaultServerSideEncryptionAlgorithm {AES256}]
bucketName bucketType

1.27.1 Positional Arguments

bucketName

bucketType

1.27.2 Named Arguments

--bucketInfo

--corsRules

--lifecycleRules

--defaultRetentionMode Possible choices: compliance, governance, none

--defaultRetentionPeriod

--defaultServerSideEncryption Possible choices: SSE-B2, none

--defaultServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

1.28 Update-file-legal-hold command

Only works in buckets with fileLockEnabled=true.

Specifying the fileName is more efficient than leaving it out. If you omit the fileName, it requires an initial query to
B2 to get the file name, before making the call to delete the file. This extra query requires the readFiles capability.

Requires capability:

• writeFileLegalHolds

• readFiles (if file name not provided)

b2 update-file-legal-hold [-h] [fileName] fileId {on,off}

1.28. Update-file-legal-hold command 21

B2_Command_Line_Tool Documentation, Release 3.0.1

1.28.1 Positional Arguments

fileName

fileId

legalHold Possible choices: on, off

1.29 Update-file-retention command

Only works in buckets with fileLockEnabled=true. Providing a retentionMode other than none requires providing
retainUntil, which has to be a future timestamp in the form of an integer representing milliseconds since epoch.

If a file already is in governance mode, disabling retention or shortening it’s period requires providing
--bypassGovernance.

If a file already is in compliance mode, disabling retention or shortening it’s period is impossible.

Warning: Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their
retention period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket
default retention, as it may lead to high storage costs.

In both cases prolonging the retention period is possible. Changing from governance to compliance is also supported.

Specifying the fileName is more efficient than leaving it out. If you omit the fileName, it requires an initial query to
B2 to get the file name, before making the call to delete the file. This extra query requires the readFiles capability.

Requires capability:

• writeFileRetentions

• readFiles (if file name not provided)

and optionally:

• bypassGovernance

b2 update-file-retention [-h] [--retainUntil TIMESTAMP] [--bypassGovernance]
[fileName] fileId {governance,compliance,none}

1.29.1 Positional Arguments

fileName

fileId

retentionMode Possible choices: governance, compliance, none

22 Chapter 1. Documentation index

B2_Command_Line_Tool Documentation, Release 3.0.1

1.29.2 Named Arguments

--retainUntil

--bypassGovernance Default: False

1.30 Upload-file command

Uploads one file to the given bucket. Uploads the contents of the local file, and assigns the given name to the B2 file,
possibly setting options like server-side encryption and retention.

Warning: Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their
retention period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket
default retention, as it may lead to high storage costs.

By default, upload_file will compute the sha1 checksum of the file to be uploaded. But, if you already have it, you can
provide it on the command line to save a little time.

Content type is optional. If not set, it will be set based on the file extension.

By default, the file is broken into as many parts as possible to maximize upload parallelism and increase speed. The
minimum that B2 allows is 100MB. Setting --minPartSize to a larger value will reduce the number of parts uploaded
when uploading a large file.

The maximum number of upload threads to use to upload parts of a large file is specified by --threads. It has no
effect on small files (under 200MB). Default is 10.

If the tqdm library is installed, progress bar is displayed on stderr. Without it, simple text progress is printed. Use
--noProgress to disable progress reporting.

Each fileInfo is of the form a=b.

To request SSE-B2 or SSE-C encryption for destination files, please set
--destinationServerSideEncryption=SSE-B2/SSE-C. The default algorithm is set to AES256 which can
be changed with --destinationServerSideEncryptionAlgorithm parameter. Using SSE-C requires provid-
ing B2_DESTINATION_SSE_C_KEY_B64 environment variable, containing the base64 encoded encryption key. If
B2_DESTINATION_SSE_C_KEY_ID environment variable is provided, it’s value will be saved as sse_c_key_id in
the uploaded file’s fileInfo.

Setting file retention settings requires the writeFileRetentions capability, and only works in bucket with fileLockEn-
abled=true. Providing --fileRetentionMode requires providing --retainUntil which has to be a future times-
tamp, in the form of an integer representing milliseconds since epoch. Leaving out these options results in a file retained
according to bucket defaults.

Setting legal holds requires the writeFileLegalHolds capability, and only works in bucket with fileLockEnabled=true.

Requires capability:

• writeFiles

b2 upload-file [-h] [--noProgress] [--quiet] [--contentType CONTENTTYPE]
[--minPartSize MINPARTSIZE] [--sha1 SHA1] [--threads THREADS]
[--info INFO]
[--destinationServerSideEncryption {SSE-B2,SSE-C}]

(continues on next page)

1.30. Upload-file command 23

B2_Command_Line_Tool Documentation, Release 3.0.1

(continued from previous page)

[--destinationServerSideEncryptionAlgorithm {AES256}]
[--legalHold {on,off}]
[--fileRetentionMode {compliance,governance}]
[--retainUntil TIMESTAMP]
bucketName localFilePath b2FileName

1.30.1 Positional Arguments

bucketName

localFilePath

b2FileName

1.30.2 Named Arguments

--noProgress Default: False

--quiet Default: False

--contentType

--minPartSize

--sha1

--threads Default: 10

--info Default: []

--destinationServerSideEncryption Possible choices: SSE-B2, SSE-C

--destinationServerSideEncryptionAlgorithm Possible choices: AES256

Default: “AES256”

--legalHold Possible choices: on, off

--fileRetentionMode Possible choices: compliance, governance

--retainUntil

1.31 Version command

Prints the version number of this tool.

b2 version [-h]

24 Chapter 1. Documentation index

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

25

	Documentation index
	Authorize-account command
	Positional Arguments

	Cancel-all-unfinished-large-files command
	Positional Arguments

	Cancel-large-file command
	Positional Arguments

	Clear-account command
	Copy-file-by-id command
	Positional Arguments
	Named Arguments

	Create-bucket command
	Positional Arguments
	Named Arguments

	Create-key command
	Positional Arguments
	Named Arguments

	Delete-bucket command
	Positional Arguments

	Delete-file-version command
	Positional Arguments

	Delete-key command
	Positional Arguments

	Download-file-by-id command
	Positional Arguments
	Named Arguments

	Download-file-by-name command
	Positional Arguments
	Named Arguments

	Get-account-info command
	Get-bucket command
	Positional Arguments
	Named Arguments

	Get-download-auth command
	Positional Arguments
	Named Arguments

	Get-download-url-with-auth command
	Positional Arguments
	Named Arguments

	Get-file-info command
	Positional Arguments

	Hide-file command
	Positional Arguments

	List-buckets command
	Named Arguments

	List-keys command
	Named Arguments

	List-parts command
	Positional Arguments

	List-unfinished-large-files command
	Positional Arguments

	Ls command
	Positional Arguments
	Named Arguments

	Make-friendly-url command
	Positional Arguments

	Make-url command
	Positional Arguments

	Sync command
	Positional Arguments
	Named Arguments

	Update-bucket command
	Positional Arguments
	Named Arguments

	Update-file-legal-hold command
	Positional Arguments

	Update-file-retention command
	Positional Arguments
	Named Arguments

	Upload-file command
	Positional Arguments
	Named Arguments

	Version command

	Indices and tables

