

Overview

This program provides command-line access to the B2 service.

There are two flows of authorization:

	call b2 authorize-account and have the credentials cached in sqlite

	set B2_APPLICATION_KEY_ID and B2_APPLICATION_KEY environment
variables when running this program

This program caches authentication-related and other data in a local SQLite database.
The location of this database is determined in the following way:

If profile arg is provided:
* XDG_CONFIG_HOME/b2/db-<profile>.sqlite, if XDG_CONFIG_HOME env var is set
* ~/.b2db-{profile}.sqlite

Otherwise:
* B2_ACCOUNT_INFO env var’s value, if set
* ~/.b2_account_info, if it exists
* XDG_CONFIG_HOME/b2/account_info, if XDG_CONFIG_HOME env var is set
* ~/.b2_account_info, as default

If the directory XDG_CONFIG_HOME/b2 does not exist (and is needed), it is created.
Please note that the above rules may be changed in next versions of b2sdk, and in order to get
reliable authentication file location you should use b2 get-account-info.

For more details on one command:

b2 <command> --help

When authorizing with application keys, this tool requires that the key
have the listBuckets capability so that it can take the bucket names
you provide on the command line and translate them into bucket IDs for the
B2 Storage service. Each different command may required additional
capabilities. You can find the details for each command in the help for
that command.

A string provided via an optional environment variable B2_USER_AGENT_APPEND
will be appended to the User-Agent.

Documentation index

	Quick Start Guide
	Prepare B2 cli

	Synchronization

	Bucket actions

	Commands
	Authorize-account command

	Cancel-all-unfinished-large-files command

	Cancel-large-file command

	Clear-account command

	Copy-file-by-id command

	Create-bucket command

	Create-key command

	Delete-bucket command

	Delete-file-version command

	Delete-key command

	Download-file-by-id command

	Download-file-by-name command

	Get-account-info command

	Get-bucket command

	Get-download-auth command

	Get-download-url-with-auth command

	Get-file-info command

	Hide-file command

	install-autocomplete command

	List-buckets command

	List-keys command

	List-parts command

	List-unfinished-large-files command

	Ls command

	Make-friendly-url command

	Make-url command

	replication-setup command

	Rm command

	Sync command

	Update-bucket command

	Update-file-legal-hold command

	Update-file-retention command

	Upload-file command

	Version command

	Replication
	Automatic setup

	Manual setup

Indices and tables

	Index

	Module Index

	Search Page

Quick Start Guide

Prepare B2 cli

$ b2 authorize-account 4ab123456789 001aabbccddeeff123456789012345678901234567
Using https://api.backblazeb2.com

Tip

Get credentials from B2 website [https://secure.backblaze.com/user_signin.htm]

Warning

Local users might be able to access your process list and read command arguments. To avoid exposing credentials,
you can provide application key ID and application key using environment variables B2_APPLICATION_KEY_ID and B2_APPLICATION_KEY respectively.
Those will be picked up automatically, so after defining those you’ll just need to run b2 authorize-account with no extra parameters.

$ export B2_APPLICATION_KEY_ID="$(<file-with-key-id.txt)"
$ export B2_APPLICATION_KEY="$(<file-with-key.txt)"
$ b2 authorize-account
Using https://api.backblazeb2.com

Synchronization

$ b2 sync "/home/user1/b2_example" "b2://bucket1/example-mybucket-b2"

Tip

Sync is the preferred way of getting data into and out of B2 cloud, because it can achieve highest performance due to parallelization of scanning and data transfer operations.

Bucket actions

List buckets

$ b2 list-buckets
34567890abcdef1234567890 allPublic example-mybucket-b2-1
345678901234567890abcdef allPublic example-mybucket-b2-2

Create a bucket

$ b2 create_bucket example-mybucket-b2-3 allPublic
...

You can optionally store bucket info, CORS rules and lifecycle rules with the bucket.

Delete a bucket

$ b2 delete-bucket 'example-mybucket-b2-1'

returns 0 if successful, outputs a message and a non-0 return code in case of error.

Commands

	Authorize-account command
	Positional Arguments

	Named Arguments

	Cancel-all-unfinished-large-files command
	Positional Arguments

	Named Arguments

	Cancel-large-file command
	Positional Arguments

	Named Arguments

	Clear-account command
	Named Arguments

	Copy-file-by-id command
	Positional Arguments

	Named Arguments

	Create-bucket command
	Positional Arguments

	Named Arguments

	Create-key command
	Positional Arguments

	Named Arguments

	Delete-bucket command
	Positional Arguments

	Named Arguments

	Delete-file-version command
	Positional Arguments

	Named Arguments

	Delete-key command
	Positional Arguments

	Named Arguments

	Download-file-by-id command
	Positional Arguments

	Named Arguments

	Download-file-by-name command
	Positional Arguments

	Named Arguments

	Get-account-info command
	Named Arguments

	Get-bucket command
	Positional Arguments

	Named Arguments

	Get-download-auth command
	Positional Arguments

	Named Arguments

	Get-download-url-with-auth command
	Positional Arguments

	Named Arguments

	Get-file-info command
	Positional Arguments

	Named Arguments

	Hide-file command
	Positional Arguments

	Named Arguments

	install-autocomplete command
	Named Arguments

	List-buckets command
	Named Arguments

	List-keys command
	Named Arguments

	List-parts command
	Positional Arguments

	Named Arguments

	List-unfinished-large-files command
	Positional Arguments

	Named Arguments

	Ls command
	Positional Arguments

	Named Arguments

	Make-friendly-url command
	Positional Arguments

	Named Arguments

	Make-url command
	Positional Arguments

	Named Arguments

	replication-setup command
	Positional Arguments

	Named Arguments

	Rm command
	Positional Arguments

	Named Arguments

	Sync command
	Positional Arguments

	Named Arguments

	Update-bucket command
	Positional Arguments

	Named Arguments

	Update-file-legal-hold command
	Positional Arguments

	Named Arguments

	Update-file-retention command
	Positional Arguments

	Named Arguments

	Upload-file command
	Positional Arguments

	Named Arguments

	Version command
	Named Arguments

Authorize-account command

Prompts for Backblaze applicationKeyId and applicationKey (unless they are given
on the command line).

You can authorize with either the master application key or
a normal application key.

To use the master application key, provide the application key ID and
application key from the B2 Cloud Storage Buckets page on
the web site: https://secure.backblaze.com/b2_buckets.htm

To use a normal application key, created with the create-key
command or on the web site, provide the application key ID
and the application key itself.

You can also optionally provide application key ID and application key
using environment variables B2_APPLICATION_KEY_ID and
B2_APPLICATION_KEY respectively.

Stores an account auth token in a local cache, see

b2 --help

for details on how the location of this cache is determined.

Requires capability:

	listBuckets

b2 authorize-account [-h] [--profile PROFILE]
 [applicationKeyId] [applicationKey]

Positional Arguments

	applicationKeyId

	

	applicationKey

	

Named Arguments

	--profile

	

Cancel-all-unfinished-large-files command

Lists all large files that have been started but not
finished and cancels them. Any parts that have been
uploaded will be deleted.

Requires capability:

	listFiles

	writeFiles

b2 cancel-all-unfinished-large-files [-h] [--profile PROFILE] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--profile

	

Cancel-large-file command

Cancels a large file upload. Used to undo a start-large-file.

Cannot be used once the file is finished. After finishing,
using delete-file-version to delete the large file.

Requires capability:

	writeFiles

b2 cancel-large-file [-h] [--profile PROFILE] fileId

Positional Arguments

	fileId

	

Named Arguments

	--profile

	

Clear-account command

Erases everything in local cache.

See

b2 --help

for details on how the location of this cache is determined.

b2 clear-account [-h] [--profile PROFILE]

Named Arguments

	--profile

	

Copy-file-by-id command

Copy a file version to the given bucket (server-side, not via download+upload).
Copies the contents of the source B2 file to destination bucket
and assigns the given name to the new B2 file,
possibly setting options like server-side encryption and retention.

Warning

Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their retention
period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket default
retention, as it may lead to high storage costs.

By default, it copies the file info and content type, therefore --contentType and --info are optional.
If one of them is set, the other has to be set as well.

To force the destination file to have empty fileInfo, use --noInfo.

By default, the whole file gets copied, but you can copy an (inclusive!) range of bytes
from the source file to the new file using --range option.

Each --info entry is in the form a=b, you can specify many.

The maximum file size is 5GB or 10TB, depending on capability of installed b2sdk version.

To request SSE-B2 or SSE-C encryption for destination files,
please set --destinationServerSideEncryption=SSE-B2/SSE-C.
The default algorithm is set to AES256 which can be changed
with --destinationServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_DESTINATION_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.
If B2_DESTINATION_SSE_C_KEY_ID environment variable is provided,
it’s value will be saved as sse_c_key_id in the
uploaded file’s fileInfo.

To access SSE-C encrypted files,
please set --sourceServerSideEncryption=SSE-C.
The default algorithm is set to AES256 which can by changed
with --sourceServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_SOURCE_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.

Setting file retention settings requires the writeFileRetentions capability, and only works in bucket
with fileLockEnabled=true. Providing --fileRetentionMode requires providing --retainUntil which has to
be a future timestamp, in the form of an integer representing milliseconds
since epoch. Leaving out these options results in a file retained according to bucket defaults.

Setting legal holds requires the writeFileLegalHolds capability, and only works in bucket
with fileLockEnabled=true.

If either the source or the destination uses SSE-C and --contentType and --info are not provided, then
to perform the copy the source file’s metadata has to be fetched first - an additional request to B2 cloud has
to be made. To achieve that, provide --fetchMetadata. Without that flag, the command will fail.

Requires capability:

	readFiles (if sourceFileId bucket is private)

	writeFiles

b2 copy-file-by-id [-h] [--profile PROFILE] [--fetchMetadata]
 [--contentType CONTENTTYPE] [--range RANGE]
 [--info INFO | --noInfo]
 [--destinationServerSideEncryption {SSE-B2,SSE-C}]
 [--destinationServerSideEncryptionAlgorithm {AES256}]
 [--sourceServerSideEncryption {SSE-C}]
 [--sourceServerSideEncryptionAlgorithm {AES256}]
 [--fileRetentionMode {compliance,governance}]
 [--retainUntil TIMESTAMP] [--legalHold {on,off}]
 sourceFileId destinationBucketName b2FileName

Positional Arguments

	sourceFileId

	

	destinationBucketName

	

	b2FileName

	

Named Arguments

	--profile

	

	--fetchMetadata

	Default: False

	--contentType

	

	--range

	

	--info

	Default: []

	--noInfo

	Default: False

	--destinationServerSideEncryption

	Possible choices: SSE-B2, SSE-C

	--destinationServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--sourceServerSideEncryption

	Possible choices: SSE-C

	--sourceServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--fileRetentionMode

	Possible choices: compliance, governance

	--retainUntil

	

	--legalHold

	Possible choices: on, off

Create-bucket command

Creates a new bucket. Prints the ID of the bucket created.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket.
These can be given as JSON on the command line.

If you want server-side encryption for all of the files that are uploaded to a bucket,
you can enable SSE-B2 encryption as a default setting for the bucket.
In order to do that pass --defaultServerSideEncryption=SSE-B2.
The default algorithm is set to AES256 which can by changed
with --defaultServerSideEncryptionAlgorithm parameter.
All uploads to that bucket, from the time default encryption is enabled onward,
will then be encrypted with SSE-B2 by default.

To disable default bucket encryption, use --defaultServerSideEncryption=none.

If --defaultServerSideEncryption is not provided,
default server side encryption is determined by the server.

Note

Note that existing files in the bucket are not affected by default bucket encryption settings.

Requires capability:

	writeBuckets

	readBucketEncryption

	writeBucketEncryption

	writeBucketRetentions

b2 create-bucket [-h] [--profile PROFILE] [--bucketInfo BUCKETINFO]
 [--corsRules CORSRULES] [--lifecycleRules LIFECYCLERULES]
 [--fileLockEnabled] [--replication REPLICATION]
 [--defaultServerSideEncryption {SSE-B2,none}]
 [--defaultServerSideEncryptionAlgorithm {AES256}]
 bucketName {allPublic,allPrivate}

Positional Arguments

	bucketName

	

	bucketType

	Possible choices: allPublic, allPrivate

Named Arguments

	--profile

	

	--bucketInfo

	

	--corsRules

	

	--lifecycleRules

	

	--fileLockEnabled

	If given, the bucket will have the file lock mechanism enabled. This parameter cannot be changed after bucket creation.

Default: False

	--replication

	

	--defaultServerSideEncryption

	Possible choices: SSE-B2, none

	--defaultServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

Create-key command

Creates a new application key. Prints the application key information. This is the only
time the application key itself will be returned. Listing application keys will show
their IDs, but not the secret keys.

The capabilities are passed in as a comma-separated list, like readFiles,writeFiles.
Optionally, you can pass all capabilities known to this client with --allCapabilities.

The duration is the length of time (in seconds) the new application key will exist.
When the time expires the key will disappear and will no longer be usable. If not
specified, the key will not expire.

The bucket is the name of a bucket in the account. When specified, the key
will only allow access to that bucket.

The namePrefix restricts file access to files whose names start with the prefix.

The output is the new application key ID, followed by the application key itself.
The two values returned are the two that you pass to authorize-account to use the key.

Requires capability:

	writeKeys

b2 create-key [-h] [--profile PROFILE] [--bucket BUCKET]
 [--namePrefix NAMEPREFIX] [--duration DURATION]
 [--allCapabilities]
 keyName [capabilities]

Positional Arguments

	keyName

	

	capabilities

	

Named Arguments

	--profile

	

	--bucket

	

	--namePrefix

	

	--duration

	

	--allCapabilities

	Default: False

Delete-bucket command

Deletes the bucket with the given name.

Requires capability:

	deleteBuckets

b2 delete-bucket [-h] [--profile PROFILE] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--profile

	

Delete-file-version command

Permanently and irrevocably deletes one version of a file.

Specifying the fileName is more efficient than leaving it out.
If you omit the fileName, it requires an initial query to B2
to get the file name, before making the call to delete the
file. This extra query requires the readFiles capability.

Requires capability:

	deleteFiles

	readFiles (if file name not provided)

b2 delete-file-version [-h] [--profile PROFILE] [fileName] fileId

Positional Arguments

	fileName

	

	fileId

	

Named Arguments

	--profile

	

Delete-key command

Deletes the specified application key by its ID.

Requires capability:

	deleteKeys

b2 delete-key [-h] [--profile PROFILE] applicationKeyId

Positional Arguments

	applicationKeyId

	

Named Arguments

	--profile

	

Download-file-by-id command

Downloads the given file, and stores it in the given local file.

If the tqdm library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use --noProgress to disable progress reporting.

To access SSE-C encrypted files,
please set --sourceServerSideEncryption=SSE-C.
The default algorithm is set to AES256 which can by changed
with --sourceServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_SOURCE_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.

Use –write-buffer-size to set the size (in bytes) of the buffer used to write files.

Use –skip-hash-verification to disable hash check on downloaded files.

Use –max-download-streams-per-file to set max num of streams for parallel downloader.

Requires capability:

	readFiles

b2 download-file-by-id [-h] [--profile PROFILE] [--noProgress]
 [--threads THREADS]
 [--sourceServerSideEncryption {SSE-C}]
 [--sourceServerSideEncryptionAlgorithm {AES256}]
 [--write-buffer-size BYTES] [--skip-hash-verification]
 [--max-download-streams-per-file MAX_DOWNLOAD_STREAMS_PER_FILE]
 fileId localFileName

Positional Arguments

	fileId

	

	localFileName

	

Named Arguments

	--profile

	

	--noProgress

	Default: False

	--threads

	Default: 10

	--sourceServerSideEncryption

	Possible choices: SSE-C

	--sourceServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--write-buffer-size

	

	--skip-hash-verification

	Default: False

	--max-download-streams-per-file

	

Download-file-by-name command

Downloads the given file, and stores it in the given local file.

If the tqdm library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use --noProgress to disable progress reporting.

To access SSE-C encrypted files,
please set --sourceServerSideEncryption=SSE-C.
The default algorithm is set to AES256 which can by changed
with --sourceServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_SOURCE_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.

Use –write-buffer-size to set the size (in bytes) of the buffer used to write files.

Use –skip-hash-verification to disable hash check on downloaded files.

Use –max-download-streams-per-file to set max num of streams for parallel downloader.

Requires capability:

	readFiles

b2 download-file-by-name [-h] [--profile PROFILE] [--noProgress]
 [--threads THREADS]
 [--sourceServerSideEncryption {SSE-C}]
 [--sourceServerSideEncryptionAlgorithm {AES256}]
 [--write-buffer-size BYTES]
 [--skip-hash-verification]
 [--max-download-streams-per-file MAX_DOWNLOAD_STREAMS_PER_FILE]
 bucketName b2FileName localFileName

Positional Arguments

	bucketName

	

	b2FileName

	

	localFileName

	

Named Arguments

	--profile

	

	--noProgress

	Default: False

	--threads

	Default: 10

	--sourceServerSideEncryption

	Possible choices: SSE-C

	--sourceServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--write-buffer-size

	

	--skip-hash-verification

	Default: False

	--max-download-streams-per-file

	

Get-account-info command

Shows the account ID, key, auth token, URLs, and what capabilities
the current application keys has.

b2 get-account-info [-h] [--profile PROFILE]

Named Arguments

	--profile

	

Get-bucket command

Prints all of the information about the bucket, including
bucket info, CORS rules and lifecycle rules.

If --showSize is specified, then display the number of files
(fileCount) in the bucket and the aggregate size of all files
(totalSize). Hidden files and hide markers are accounted for
in the reported number of files, and hidden files also
contribute toward the reported aggregate size, whereas hide
markers do not. Each version of a file counts as an individual
file, and its size contributes toward the aggregate size.
Analysis is recursive.

Note

Note that --showSize requires multiple
API calls, and will therefore incur additional latency,
computation, and Class C transactions.

Requires capability:

	listBuckets

b2 get-bucket [-h] [--profile PROFILE] [--showSize] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--profile

	

	--showSize

	Default: False

Get-download-auth command

Prints an authorization token that is valid only for downloading
files from the given bucket.

The token is valid for the duration specified, which defaults
to 86400 seconds (one day).

Only files that match that given prefix can be downloaded with
the token. The prefix defaults to “”, which matches all files
in the bucket.

Requires capability:

	shareFiles

b2 get-download-auth [-h] [--profile PROFILE] [--prefix PREFIX]
 [--duration DURATION]
 bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--profile

	

	--prefix

	Default: “”

	--duration

	Default: 86400

Get-download-url-with-auth command

Prints a URL to download the given file. The URL includes an authorization
token that allows downloads from the given bucket for files whose names
start with the given file name.

The URL will work for the given file, but is not specific to that file. Files
with longer names that start with the give file name can also be downloaded
with the same auth token.

The token is valid for the duration specified, which defaults
to 86400 seconds (one day).

Requires capability:

	shareFiles

b2 get-download-url-with-auth [-h] [--profile PROFILE] [--duration DURATION]
 bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

Named Arguments

	--profile

	

	--duration

	Default: 86400

Get-file-info command

Prints all of the information about the file, but not its contents.

Requires capability:

	readFiles

b2 get-file-info [-h] [--profile PROFILE] fileId

Positional Arguments

	fileId

	

Named Arguments

	--profile

	

Hide-file command

Uploads a new, hidden, version of the given file.

Requires capability:

	writeFiles

b2 hide-file [-h] [--profile PROFILE] bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

Named Arguments

	--profile

	

install-autocomplete command

Installs autocomplete for supported shells.

Autocomplete is installed for the current user only and will become available after shell reload.
Any existing autocomplete configuration for same executable name will be overwritten.

–shell SHELL
Shell to install autocomplete for. Autodetected if not specified.
Manually specify “bash” to force bash autocomplete installation when running under different shell.

Note

Please note this command WILL modify your shell configuration file (e.g. ~/.bashrc).

b2 install-autocomplete [-h] [--profile PROFILE] [--shell {bash}]

Named Arguments

	--profile

	

	--shell

	Possible choices: bash

List-buckets command

Lists all of the buckets in the current account.

Output lines list the bucket ID, bucket type, and bucket name,
and look like this:

98c960fd1cb4390c5e0f0519 allPublic my-bucket

Alternatively, the --json option produces machine-readable output
similar (but not identical) to the server api response format.

Requires capability:

	listBuckets

b2 list-buckets [-h] [--profile PROFILE] [--json]

Named Arguments

	--profile

	

	--json

	Default: False

List-keys command

Lists the application keys for the current account.

The columns in the output are:

	ID of the application key

	Name of the application key

	Name of the bucket the key is restricted to, or - for no restriction

	Date of expiration, or -

	Time of expiration, or -

	File name prefix, in single quotes

	Command-separated list of capabilities

None of the values contain whitespace.

For keys restricted to buckets that do not exist any more, the bucket name is
replaced with id=<bucketId>, because deleted buckets do not have names any
more.

Requires capability:

	listKeys

b2 list-keys [-h] [--profile PROFILE] [--long]

Named Arguments

	--profile

	

	--long

	Default: False

List-parts command

Lists all of the parts that have been uploaded for the given
large file, which must be a file that was started but not
finished or canceled.

Requires capability:

	writeFiles

b2 list-parts [-h] [--profile PROFILE] largeFileId

Positional Arguments

	largeFileId

	

Named Arguments

	--profile

	

List-unfinished-large-files command

Lists all of the large files in the bucket that were started,
but not finished or canceled.

Requires capability:

	listFiles

b2 list-unfinished-large-files [-h] [--profile PROFILE] bucketName

Positional Arguments

	bucketName

	

Named Arguments

	--profile

	

Ls command

Using the file naming convention that / separates folder
names from their contents, returns a list of the files
and folders in a given folder. If no folder name is given,
lists all files at the top level.

The --long option produces very wide multi-column output
showing the upload date/time, file size, file id, whether it
is an uploaded file or the hiding of a file, and the file
name. Folders don’t really exist in B2, so folders are
shown with - in each of the fields other than the name.

The --json option produces machine-readable output similar to
the server api response format.

The --replication option adds replication status

The --versions option selects all versions of each file, not
just the most recent.

The --recursive option will descend into folders, and will select
only files, not folders.

The --withWildcard option will allow using *, ? and `[]`
characters in folderName as a greedy wildcard, single character
wildcard and range of characters. It requires the --recursive option.
Remember to quote folderName to avoid shell expansion.

Examples

Note

Note the use of quotes, to ensure that special
characters are not expanded by the shell.

List csv and tsv files (in any directory, in the whole bucket):

b2 ls --recursive --withWildcard bucketName "*.[ct]sv"

List all info.txt files from buckets bX, where X is any character:

b2 ls --recursive --withWildcard bucketName "b?/info.txt"

List all pdf files from buckets b0 to b9 (including sub-directories):

b2 ls --recursive --withWildcard bucketName "b[0-9]/*.pdf"

Requires capability:

	listFiles

b2 ls [-h] [--profile PROFILE] [--long] [--json] [--replication] [--versions]
 [--recursive] [--withWildcard]
 bucketName [folderName]

Positional Arguments

	bucketName

	

	folderName

	

Named Arguments

	--profile

	

	--long

	Default: False

	--json

	Default: False

	--replication

	Default: False

	--versions

	Default: False

	--recursive

	Default: False

	--withWildcard

	Default: False

Make-friendly-url command

Prints a short URL that can be used to download the given file, if
it is public.

b2 make-friendly-url [-h] [--profile PROFILE] bucketName fileName

Positional Arguments

	bucketName

	

	fileName

	

Named Arguments

	--profile

	

Make-url command

Prints an URL that can be used to download the given file, if
it is public.

b2 make-url [-h] [--profile PROFILE] fileId

Positional Arguments

	fileId

	

Named Arguments

	--profile

	

replication-setup command

Sets up replication between two buckets (potentially from different accounts), creating and replacing keys if necessary.

Requires capabilities on both profiles:

	listKeys

	createKeys

	readReplications

	writeReplications

b2 replication-setup [-h] [--profile PROFILE]
 [--destination-profile DESTINATION_PROFILE] [--name NAME]
 [--priority PRIORITY] [--file-name-prefix PREFIX]
 [--include-existing-files]
 SOURCE_BUCKET_NAME DESTINATION_BUCKET_NAME

Positional Arguments

	SOURCE_BUCKET_NAME

	

	DESTINATION_BUCKET_NAME

	

Named Arguments

	--profile

	

	--destination-profile

	

	--name

	name for the new replication rule on the source side

	--priority

	priority for the new replication rule on the source side [1-2147483647]. Will be set automatically when not specified.

	--file-name-prefix

	only replicate files starting with PREFIX

	--include-existing-files

	if given, also replicates files uploaded prior to creation of the replication rule

Default: False

Rm command

Removes a “folder” or a set of files matching a pattern. Use with caution.

Note

rm is a high-level command that under the hood utilizes multiple calls to the server,
which means the server cannot guarantee consistency between multiple operations. For
example if a file matching a pattern is uploaded during a run of rm command, it MIGHT
be deleted (as “latest”) instead of the one present when the rm run has started.

In order to safely delete a single file version, please use delete-file-version.

To list (but not remove) files to be deleted, use --dryRun. You can also
list files via ls command - the listing behaviour is exactly the same.

Users with multiple files to be removed will benefit from multi-threaded
capabilities. The default number of threads is 10.

Progress is displayed on the console unless --noProgress is specified.

The --versions option selects all versions of each file, not
just the most recent.

The --recursive option will descend into folders, and will select
only files, not folders.

The --withWildcard option will allow using *, ? and `[]`
characters in folderName as a greedy wildcard, single character
wildcard and range of characters. It requires the --recursive option.
Remember to quote folderName to avoid shell expansion.

The --dryRun option prints all the files that would be affected by
the command, but removes nothing.

Normally, when an error happens during file removal, log is printed and the command
goes further. If any error should be immediately breaking the command,
--failFast can be passed to ensure that first error will stop the execution.
This could be useful to e.g. check whether provided credentials have deleteFiles
capabilities.

Note

Using --failFast doesn’t prevent the command from trying to remove further files.
It just stops the progress. Since multiple files are removed in parallel, it’s possible
that just some of them were not reported.

Command returns 0 if all files were removed successfully and
a value different from 0 if any file was left.

Examples.

Note

Note the use of quotes, to ensure that special
characters are not expanded by the shell.

Note

Use with caution. Running examples presented below can cause data-loss.

Remove all csv and tsv files (in any directory, in the whole bucket):

b2 rm --recursive --withWildcard bucketName "*.[ct]sv"

Remove all info.txt files from buckets bX, where X is any character:

b2 rm --recursive --withWildcard bucketName "b?/info.txt"

Remove all pdf files from buckets b0 to b9 (including sub-directories):

b2 rm --recursive --withWildcard bucketName "b[0-9]/*.pdf"

Requires capability:

	listFiles

	deleteFiles

b2 rm [-h] [--profile PROFILE] [--dryRun] [--threads THREADS]
 [--queueSize QUEUESIZE] [--noProgress] [--failFast] [--versions]
 [--recursive] [--withWildcard]
 bucketName [folderName]

Positional Arguments

	bucketName

	

	folderName

	

Named Arguments

	--profile

	

	--dryRun

	Default: False

	--threads

	Default: 10

	--queueSize

	max elements fetched at once for removal, if left unset defaults to twice the number of threads.

	--noProgress

	Default: False

	--failFast

	Default: False

	--versions

	Default: False

	--recursive

	Default: False

	--withWildcard

	Default: False

Sync command

Copies multiple files from source to destination. Optionally
deletes or hides destination files that the source does not have.

The synchronizer can copy files:

	From a B2 bucket to a local destination.

	From a local source to a B2 bucket.

	From one B2 bucket to another.

	Between different folders in the same B2 bucket.

Use b2://<bucketName>/<prefix> for B2 paths, e.g. b2://my-bucket-name/a/path/prefix/.

Progress is displayed on the console unless --noProgress is
specified. A list of actions taken is always printed.

Specify --dryRun to simulate the actions that would be taken.

To allow sync to run when the source directory is empty, potentially
deleting all files in a bucket, specify --allowEmptySource.
The default is to fail when the specified source directory doesn’t exist
or is empty. (This check only applies to version 1.0 and later.)

Users with high-performance networks, or file sets with very small
files, will benefit from multi-threaded uploads and downloads. The default
number of threads for syncing, downloading, and uploading is 10.
The number of files processed in parallel is set by --syncThreads,
the number of files/file parts downloaded in parallel is set by``–downloadThreads``,
and the number of files/file parts uploaded in parallel is set by –uploadThreads`.
All the three parameters can be set to the same value by --threads.
Experiment with parameters if the defaults are not working well.

Users with low-performance networks may benefit from reducing the
number of threads. Using just one thread will minimize the impact
on other users of the network.

Note

Note that using multiple threads could be detrimental to
the other users on your network.

You can specify --excludeRegex to selectively ignore files that
match the given pattern. Ignored files will not copy during
the sync operation. The pattern is a regular expression
that is tested against the full path of each file.

You can specify --includeRegex to selectively override ignoring
files that match the given --excludeRegex pattern by an
--includeRegex pattern. Similarly to --excludeRegex, the pattern
is a regular expression that is tested against the full path
of each file.

Note

Note that --includeRegex cannot be used without --excludeRegex.

You can specify --excludeAllSymlinks to skip symlinks when
syncing from a local source.

When a directory is excluded by using --excludeDirRegex, all of
the files within it are excluded, even if they match an --includeRegex
pattern. This means that there is no need to look inside excluded
directories, and you can exclude directories containing files for which
you don’t have read permission and avoid getting errors.

The --excludeDirRegex is a regular expression that is tested against
the full path of each directory. The path being matched does not have
a trailing /, so don’t include on in your regular expression.

Multiple regex rules can be applied by supplying them as pipe
delimited instructions. Note that the regex for this command
is Python regex.
Reference: https://docs.python.org/3/library/re.html

Regular expressions are considered a match if they match a substring
starting at the first character. .*e will match hello. This is
not ideal, but we will maintain this behavior for compatibility.
If you want to match the entire path, put a $ at the end of the
regex, such as .*llo$.

You can specify --excludeIfModifiedAfter to selectively ignore file versions
(including hide markers) which were synced after given time (for local source)
or ignore only specific file versions (for b2 source).
Ignored files or file versions will not be taken for consideration during sync.
The time should be given as a seconds timestamp (e.g. “1367900664”)
If you need milliseconds precision, put it after the comma (e.g. “1367900664.152”)

Files are considered to be the same if they have the same name
and modification time. This behaviour can be changed using the
--compareVersions option. Possible values are:

	none: Comparison using the file name only

	modTime: Comparison using the modification time (default)

	size: Comparison using the file size

A future enhancement may add the ability to compare the SHA1 checksum
of the files.

Fuzzy comparison of files based on modTime or size can be enabled by
specifying the --compareThreshold option. This will treat modTimes
(in milliseconds) or sizes (in bytes) as the same if they are within
the comparison threshold. Files that match, within the threshold, will
not be synced. Specifying --verbose and --dryRun can be useful to
determine comparison value differences.

When a destination file is present that is not in the source, the
default is to leave it there. Specifying --delete means to delete
destination files that are not in the source.

When the destination is B2, you have the option of leaving older
versions in place. Specifying --keepDays will delete any older
versions more than the given number of days old, based on the
modification time of the file. This option is not available when
the destination is a local folder.

Files at the source that have a newer modification time are always
copied to the destination. If the destination file is newer, the
default is to report an error and stop. But with --skipNewer set,
those files will just be skipped. With --replaceNewer set, the
old file from the source will replace the newer one in the destination.

To make the destination exactly match the source, use:

b2 sync --delete --replaceNewer

Warning

Using --delete deletes files! We recommend not using it.
If you use --keepDays instead, you will have some time to recover your
files if you discover they are missing on the source end.

To make the destination match the source, but retain previous versions
for 30 days:

b2 sync --keepDays 30 --replaceNewer ... b2://...

Example of sync being used with --excludeRegex. This will ignore .DS_Store files
and .Spotlight-V100 folders:

b2 sync --excludeRegex '(.*\.DS_Store)|(.*\.Spotlight-V100)' ... b2://...

To request SSE-B2 or SSE-C encryption for destination files,
please set --destinationServerSideEncryption=SSE-B2/SSE-C.
The default algorithm is set to AES256 which can be changed
with --destinationServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_DESTINATION_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.
If B2_DESTINATION_SSE_C_KEY_ID environment variable is provided,
it’s value will be saved as sse_c_key_id in the
uploaded file’s fileInfo.

To access SSE-C encrypted files,
please set --sourceServerSideEncryption=SSE-C.
The default algorithm is set to AES256 which can by changed
with --sourceServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_SOURCE_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.

Use –write-buffer-size to set the size (in bytes) of the buffer used to write files.

Use –skip-hash-verification to disable hash check on downloaded files.

Use –max-download-streams-per-file to set max num of streams for parallel downloader.

Use –incrementalMode to allow for incremental file uploads to safe bandwidth. This will only affect files, which
have been appended to since last upload.

Requires capabilities:

	listFiles

	readFiles (for downloading)

	writeFiles (for uploading)

b2 sync [-h] [--profile PROFILE] [--noProgress] [--dryRun]
 [--allowEmptySource] [--excludeAllSymlinks] [--threads THREADS]
 [--syncThreads SYNCTHREADS] [--downloadThreads DOWNLOADTHREADS]
 [--uploadThreads UPLOADTHREADS]
 [--compareVersions {none,modTime,size}] [--compareThreshold MILLIS]
 [--excludeRegex REGEX] [--includeRegex REGEX]
 [--excludeDirRegex REGEX] [--excludeIfModifiedAfter TIMESTAMP]
 [--destinationServerSideEncryption {SSE-B2,SSE-C}]
 [--destinationServerSideEncryptionAlgorithm {AES256}]
 [--sourceServerSideEncryption {SSE-C}]
 [--sourceServerSideEncryptionAlgorithm {AES256}]
 [--write-buffer-size BYTES] [--skip-hash-verification]
 [--max-download-streams-per-file MAX_DOWNLOAD_STREAMS_PER_FILE]
 [--incrementalMode] [--skipNewer | --replaceNewer]
 [--delete | --keepDays DAYS]
 source destination

Positional Arguments

	source

	

	destination

	

Named Arguments

	--profile

	

	--noProgress

	Default: False

	--dryRun

	Default: False

	--allowEmptySource

	Default: False

	--excludeAllSymlinks

	Default: False

	--threads

	

	--syncThreads

	Default: 10

	--downloadThreads

	Default: 10

	--uploadThreads

	Default: 10

	--compareVersions

	Possible choices: none, modTime, size

Default: “modTime”

	--compareThreshold

	

	--excludeRegex

	Default: []

	--includeRegex

	Default: []

	--excludeDirRegex

	Default: []

	--excludeIfModifiedAfter

	

	--destinationServerSideEncryption

	Possible choices: SSE-B2, SSE-C

	--destinationServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--sourceServerSideEncryption

	Possible choices: SSE-C

	--sourceServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--write-buffer-size

	

	--skip-hash-verification

	Default: False

	--max-download-streams-per-file

	

	--incrementalMode

	Default: False

	--skipNewer

	Default: False

	--replaceNewer

	Default: False

	--delete

	Default: False

	--keepDays

	

Update-bucket command

Updates the bucketType of an existing bucket. Prints the ID
of the bucket updated.

Optionally stores bucket info, CORS rules and lifecycle rules with the bucket.
These can be given as JSON on the command line.

If you want server-side encryption for all of the files that are uploaded to a bucket,
you can enable SSE-B2 encryption as a default setting for the bucket.
In order to do that pass --defaultServerSideEncryption=SSE-B2.
The default algorithm is set to AES256 which can by changed
with --defaultServerSideEncryptionAlgorithm parameter.
All uploads to that bucket, from the time default encryption is enabled onward,
will then be encrypted with SSE-B2 by default.

To disable default bucket encryption, use --defaultServerSideEncryption=none.

If --defaultServerSideEncryption is not provided,
default server side encryption is determined by the server.

Note

Note that existing files in the bucket are not affected by default bucket encryption settings.

To set a default retention for files in the bucket --defaultRetentionMode and
--defaultRetentionPeriod have to be specified. The latter one is of the form “X days|years”.

Warning

Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their retention
period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket default
retention, as it may lead to high storage costs.

This command can be used to set the bucket’s fileLockEnabled flag to true using the --fileLockEnabled
option. This can only be done if the bucket is not set up as a replication source.

Warning

Once fileLockEnabled is set, it can NOT be reverted back to false

Please note that replication from file-lock-enabled bucket to file-lock-disabled bucket is not allowed, therefore
if file lock is enabled on a bucket, it can never again be the replication source bucket for a file-lock-disabled destination.

Additionally in a file-lock-enabled bucket the file metadata limit will be decreased from 7000 bytes to 2048 bytes for new file versions
Please consult b2_update_bucket official documentation for further guidance.

Requires capability:

	writeBuckets

	readBucketEncryption

and for some operations:

	writeBucketRetentions

	writeBucketEncryption

b2 update-bucket [-h] [--profile PROFILE] [--bucketInfo BUCKETINFO]
 [--corsRules CORSRULES] [--lifecycleRules LIFECYCLERULES]
 [--defaultRetentionMode {compliance,governance,none}]
 [--defaultRetentionPeriod period] [--replication REPLICATION]
 [--fileLockEnabled]
 [--defaultServerSideEncryption {SSE-B2,none}]
 [--defaultServerSideEncryptionAlgorithm {AES256}]
 bucketName [{allPublic,allPrivate}]

Positional Arguments

	bucketName

	

	bucketType

	Possible choices: allPublic, allPrivate

Named Arguments

	--profile

	

	--bucketInfo

	

	--corsRules

	

	--lifecycleRules

	

	--defaultRetentionMode

	Possible choices: compliance, governance, none

	--defaultRetentionPeriod

	

	--replication

	

	--fileLockEnabled

	If given, the bucket will have the file lock mechanism enabled. This parameter cannot be changed back.

	--defaultServerSideEncryption

	Possible choices: SSE-B2, none

	--defaultServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

Update-file-legal-hold command

Only works in buckets with fileLockEnabled=true.

Specifying the fileName is more efficient than leaving it out.
If you omit the fileName, it requires an initial query to B2
to get the file name, before making the call to delete the
file. This extra query requires the readFiles capability.

Requires capability:

	writeFileLegalHolds

	readFiles (if file name not provided)

b2 update-file-legal-hold [-h] [--profile PROFILE] [fileName] fileId {on,off}

Positional Arguments

	fileName

	

	fileId

	

	legalHold

	Possible choices: on, off

Named Arguments

	--profile

	

Update-file-retention command

Only works in buckets with fileLockEnabled=true. Providing a retentionMode other than none requires
providing retainUntil, which has to be a future timestamp in the form of an integer representing milliseconds
since epoch.

If a file already is in governance mode, disabling retention or shortening it’s period requires providing
--bypassGovernance.

If a file already is in compliance mode, disabling retention or shortening it’s period is impossible.

Warning

Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their retention
period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket default
retention, as it may lead to high storage costs.

In both cases prolonging the retention period is possible. Changing from governance to compliance is also supported.

Specifying the fileName is more efficient than leaving it out.
If you omit the fileName, it requires an initial query to B2
to get the file name, before making the call to delete the
file. This extra query requires the readFiles capability.

Requires capability:

	writeFileRetentions

	readFiles (if file name not provided)

and optionally:

	bypassGovernance

b2 update-file-retention [-h] [--profile PROFILE] [--retainUntil TIMESTAMP]
 [--bypassGovernance]
 [fileName] fileId {governance,compliance,none}

Positional Arguments

	fileName

	

	fileId

	

	retentionMode

	Possible choices: governance, compliance, none

Named Arguments

	--profile

	

	--retainUntil

	

	--bypassGovernance

	Default: False

Upload-file command

Uploads one file to the given bucket. Uploads the contents
of the local file, and assigns the given name to the B2 file,
possibly setting options like server-side encryption and retention.

Warning

Setting file retention mode to ‘compliance’ is irreversible - such files can only be ever deleted after their retention
period passes, regardless of keys (master or not) used. This is especially dangerous when setting bucket default
retention, as it may lead to high storage costs.

By default, upload_file will compute the sha1 checksum of the file
to be uploaded. But, if you already have it, you can provide it
on the command line to save a little time.

Content type is optional. If not set, it will be set based on the
file extension.

By default, the file is broken into as many parts as possible to
maximize upload parallelism and increase speed. The minimum that
B2 allows is 100MB. Setting --minPartSize to a larger value will
reduce the number of parts uploaded when uploading a large file.

The maximum number of upload threads to use to upload parts of a large file
is specified by --threads. It has no effect on small files (under 200MB).
Default is 10.

If the tqdm library is installed, progress bar is displayed
on stderr. Without it, simple text progress is printed.
Use --noProgress to disable progress reporting.

Each fileInfo is of the form a=b.

To request SSE-B2 or SSE-C encryption for destination files,
please set --destinationServerSideEncryption=SSE-B2/SSE-C.
The default algorithm is set to AES256 which can be changed
with --destinationServerSideEncryptionAlgorithm parameter.
Using SSE-C requires providing B2_DESTINATION_SSE_C_KEY_B64 environment variable,
containing the base64 encoded encryption key.
If B2_DESTINATION_SSE_C_KEY_ID environment variable is provided,
it’s value will be saved as sse_c_key_id in the
uploaded file’s fileInfo.

Setting file retention settings requires the writeFileRetentions capability, and only works in bucket
with fileLockEnabled=true. Providing --fileRetentionMode requires providing --retainUntil which has to
be a future timestamp, in the form of an integer representing milliseconds
since epoch. Leaving out these options results in a file retained according to bucket defaults.

Setting legal holds requires the writeFileLegalHolds capability, and only works in bucket
with fileLockEnabled=true.

Use –incrementalMode to allow for incremental file uploads to safe bandwidth. This will only affect files, which
have been appended to since last upload.

The --custom-upload-timestamp, in milliseconds-since-epoch, can be used
to artificially change the upload timestamp of the file for the purpose
of preserving retention policies after migration of data from other storage.
The access to this feature is restricted - if you really need it, you’ll
need to contact customer support to enable it temporarily for your account.

Requires capability:

	writeFiles

b2 upload-file [-h] [--profile PROFILE] [--noProgress] [--quiet]
 [--contentType CONTENTTYPE] [--minPartSize MINPARTSIZE]
 [--sha1 SHA1] [--threads THREADS] [--info INFO]
 [--custom-upload-timestamp CUSTOM_UPLOAD_TIMESTAMP]
 [--destinationServerSideEncryption {SSE-B2,SSE-C}]
 [--destinationServerSideEncryptionAlgorithm {AES256}]
 [--legalHold {on,off}]
 [--fileRetentionMode {compliance,governance}]
 [--retainUntil TIMESTAMP] [--incrementalMode]
 bucketName localFilePath b2FileName

Positional Arguments

	bucketName

	

	localFilePath

	

	b2FileName

	

Named Arguments

	--profile

	

	--noProgress

	Default: False

	--quiet

	Default: False

	--contentType

	

	--minPartSize

	

	--sha1

	

	--threads

	Default: 10

	--info

	Default: []

	--custom-upload-timestamp

	

	--destinationServerSideEncryption

	Possible choices: SSE-B2, SSE-C

	--destinationServerSideEncryptionAlgorithm

	Possible choices: AES256

Default: “AES256”

	--legalHold

	Possible choices: on, off

	--fileRetentionMode

	Possible choices: compliance, governance

	--retainUntil

	

	--incrementalMode

	Default: False

Version command

Prints the version number of this tool.

b2 version [-h] [--profile PROFILE]

Named Arguments

	--profile

	

Replication

If you have access to accounts hosting both source and destination bucket (it can be the same account), we recommend using replication-setup command described below. Otherwise use manual setup.

Automatic setup

Setup replication

$ b2 replication-setup --destination-profile myprofile2 my-bucket my-bucket2

You can optionally choose source rule priority and source rule name. See replication-setup command.

Note

replication-setup will reuse or provision a source key with no prefix and full reading capabilities and a destination key with no prefix and full writing capabilities

Manual setup

Setup source key

$ b2 create-key my-bucket-rplsrc readFiles,readFileLegalHolds,readFileRetentions
0014ab1234567890000000123 K001ZA12345678901234567890ABCDE

Setup source replication

$ b2 update-bucket --replication '{
 "asReplicationSource": {
 "replicationRules": [
 {
 "destinationBucketId": "85644d98debc657d880b0e1e",
 "fileNamePrefix": "files-to-share/",
 "includeExistingFiles": false,
 "isEnabled": true,
 "priority": 128,
 "replicationRuleName": "my-replication-rule-name"
 }
],
 "sourceApplicationKeyId": "0014ab1234567890000000123"
 }
}' my-bucket

Setup destination key

$ b2 create-key --profile myprofile2 my-bucket-rpldst writeFiles,writeFileLegalHolds,writeFileRetentions,deleteFiles
0024ab2345678900000000234 K001YYABCDE12345678901234567890

Setup destination replication

$ b2 update-bucket --profile myprofile2 --replication '{
 "asReplicationDestination": {
 "sourceToDestinationKeyMapping": {
 "0014ab1234567890000000123": "0024ab2345678900000000234"
 }
 }
}' my-bucket

Index

 This program provides command-line access to the B2 service.

There are two flows of authorization:

	call b2 authorize-account and have the credentials cached in sqlite

	set B2_APPLICATION_KEY_ID and B2_APPLICATION_KEY environment
variables when running this program

This program caches authentication-related and other data in a local SQLite database.
The location of this database is determined in the following way:

If profile arg is provided:
* XDG_CONFIG_HOME/b2/db-<profile>.sqlite, if XDG_CONFIG_HOME env var is set
* ~/.b2db-{profile}.sqlite

Otherwise:
* B2_ACCOUNT_INFO env var’s value, if set
* ~/.b2_account_info, if it exists
* XDG_CONFIG_HOME/b2/account_info, if XDG_CONFIG_HOME env var is set
* ~/.b2_account_info, as default

If the directory XDG_CONFIG_HOME/b2 does not exist (and is needed), it is created.
Please note that the above rules may be changed in next versions of b2sdk, and in order to get
reliable authentication file location you should use b2 get-account-info.

For more details on one command:

b2 <command> --help

When authorizing with application keys, this tool requires that the key
have the listBuckets capability so that it can take the bucket names
you provide on the command line and translate them into bucket IDs for the
B2 Storage service. Each different command may required additional
capabilities. You can find the details for each command in the help for
that command.

A string provided via an optional environment variable B2_USER_AGENT_APPEND
will be appended to the User-Agent.

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Quick Start Guide

 		
 Prepare B2 cli

 		
 Synchronization

 		
 Bucket actions

 		
 List buckets

 		
 Create a bucket

 		
 Delete a bucket

 		
 Commands

 		
 Authorize-account command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Cancel-all-unfinished-large-files command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Cancel-large-file command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Clear-account command

 		
 Named Arguments

 		
 Copy-file-by-id command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Create-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Create-key command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Delete-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Delete-file-version command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Delete-key command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Download-file-by-id command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Download-file-by-name command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-account-info command

 		
 Named Arguments

 		
 Get-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-download-auth command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-download-url-with-auth command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get-file-info command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Hide-file command

 		
 Positional Arguments

 		
 Named Arguments

 		
 install-autocomplete command

 		
 Named Arguments

 		
 List-buckets command

 		
 Named Arguments

 		
 List-keys command

 		
 Named Arguments

 		
 List-parts command

 		
 Positional Arguments

 		
 Named Arguments

 		
 List-unfinished-large-files command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Ls command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Make-friendly-url command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Make-url command

 		
 Positional Arguments

 		
 Named Arguments

 		
 replication-setup command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Rm command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Sync command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Update-bucket command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Update-file-legal-hold command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Update-file-retention command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Upload-file command

 		
 Positional Arguments

 		
 Named Arguments

 		
 Version command

 		
 Named Arguments

 		
 Replication

 		
 Automatic setup

 		
 Setup replication

 		
 Manual setup

 		
 Setup source key

 		
 Setup source replication

 		
 Setup destination key

 		
 Setup destination replication

